Carlos Pardo will give an online presentation about Automotive Optical Multi-gigabit Ethernet at the Automotive Technologies Virtual Conference

Carlos Pardo will give an online presentation about Automotive Optical Multi-gigabit Ethernet at the Automotive Technologies Virtual Conference on May 13, 2021 at 5:30 p.m. EST and on demand. In-Vehicle Network (IVN) requirements are quickly evolving with new challenges like automated driving or electric power trains. The IVN has to support use cases such the vehicle data backbone, smart antennas, ADAS cameras/sensors, and displays or data loggers which demand higher data bandwidth while maintaining the reliability level required by the automotive industry. A new IVN standard is needed for multi-gigabit optical communications.

This optical automotive IVN communication standard, 802.3cz, is currently under development within the IEEE and is supported by several industry-leading companies. The new standard will cover rates up to 50 Gbits/s and support several in-line connectors. The target BER is better than 10-12 with ambient operation temp from -40°C up to +105°C (AEC-Q100 grade 2) in harsh automotive environments. High reliability (15 years operation, less than 10 FIT), and outstanding EMC compliance will also be fulfilled. In his presentation, Carlos Pardo will cover the need standard, and detail the components needed to make this a reality.

For more information and registration, please visit automotivevirtualconference.com

The new integrated KD9351 Fiber Optic Transceiver (FOT) from KDPOF further reduces costs for optical in-vehicle networks at 1 Gb/s. Incorporating the transmit and receive optoelectronics into one single component, the KD9351 is an optical transceiver for 100 Mb/s up to 1 Gb/s with a small footprint. “Compared to STP (shielded twisted pair of copper wires), the combination of the new KD9351 FOT with the continuing KD1053 IC cuts the cost for 1 Gb/s by 30 percent,” explained Carlos Pardo, CEO and Co-founder of KDPOF. “The new integrated device provides enhanced efficiency and flexibility. It thus paves the way to optical multi-gigabit Ethernet in the vehicle.” Applications for the new KD9351, with competitive pricing for EMC critical or galvanic isolated critical links, include safe Ethernet backbones and sensor links for advanced driver assist systems (ADAS).

KDPOF Provides Efficient Optical Technology for Safe Backbone and ADAS Sensor Links in Vehicles

KDPOF presents new integrated KD9351 FOT for automotive gigabit connectivity

New integrated KD9351 FOT for automotive gigabit connectivity

KDPOF significantly lowers costs for the new KD9351 by constructing the transimpedance amplifier, photodiode, LED driver, and LED as one single device. Additional benefits are a shorter supply chain and no test duplication with the final test at the Tier1. Furthermore, the assembly of the FOT and the existing KD1053 IC is simplified and the connector offers snap-fit without soldering. The KD9351 reuses low-cost MEMs encapsulation and allows SMD reflow assembly with 8 by 7 mm LGA components. It is fully shielded against electromagnetic radiation. Fiber connection is done with a very simple plastic connector placed on top. The temperature range, from -40 °C to +105 °C, conforms with harsh automotive environmental requirements. The FOT withstands motor conditions with a vibration class of V2. Additionally, the device endures water without sealing. EMC performance is excellent even with the ECU shield case removed, as shielding is integrated into the PCB component. Optics implement Tx and Rx lenses. Samples are already available.

Interview: Multi-gigabit Calls for Optical Connectivity in Vehicles

Carlos Pardo speaks to Sanjay Gangal of edacafe.com. Key questions have been: What are the key challenges for connectivity in electric vehicles? How can the cost issue be met? With autonomous driving ahead, the bandwidth required will speed up beyond one gigabit. How will the upcoming automotive network be able to meet speed and cost requirements?

YouTube

By loading the video, you agree to YouTube's privacy policy.
Learn more

Load video

Connection and Traffic Testing with the KDPOF Automotive Evaluation Kit
YouTube

By loading the video, you agree to YouTube's privacy policy.
Learn more

Load video

The video demonstrates the connection and traffic test for the KD1053 evaluation boards included in the automotive evaluation kit.  Connecting gigabit Ethernet over fiber optics, the automotive kit supports OEMs and Tier1 suppliers in technology evaluations. The kit is self-contained and includes all the necessary components to establish 100 and 1000 Mbps links over Plastic Optical Fibers (POF). The boards are versatile, auto-grade for SFP-POF. They are optimized for lab measurements in extreme operating temperatures, radiation, and voltage supply corners.

The automotive evaluation kit contains:

  • 2 SFP-POF media converter boards
  • 15 meters/4 in-line connectors POF harness or 40 meters/0 in-line connectors POF harness
  • 1000BASE-T SFP modules/UTP & SFP twinax cables
  • USB2ALL POF link

KDPOF presents the brand new integrated Fiber Optic Transceiver (FOT) KD7051. It is the first device for optical in-vehicle connectivity that incorporates the transceiver IC, optoelectronics, and optics. The integrated FOT is a 100 Mb/s optical port in one single component. “By constructing the ASIC IC, photodiode and LED as one single device, we significantly reduce cost and footprint for automotive Ethernet connectivity at 100 Mb/s,” stated Carlos Pardo, CEO and Co-Founder of KDPOF. “The decreased number of parts also reduces the effort in testing and qualification.”

Cost and Size Reduction by Integrating Transceiver IC, Optoelectronics, and Optics into One Fiber Optic Transceiver

KDPOF’s new KD7051 thus substantially reduces the overall expense compared to STP (shielded twisted pair of copper wires). Further advantages are no margin stacking between links in the supply chain and supply chain simplification. Consequently, it offers competitive pricing for EMC critical or galvanic isolated critical links. Applications include battery management systems, camera and sensor links, fast Ethernet links and smart antenna links.

All New Physical Layer

KDPOF’s new transceiver IC KD7051 offers a complete new FOT design. It reuses low cost MEMs encapsulation and allows SMD reflow assembly with 8 by 7 mm LGA components. The FOT is fully shielded against electromagnetic radiation. Fiber connection is done with a very simple plastic connector placed on top. The temperature range, from -40 °C to +105 °C, conforms with harsh automotive environmental requirements. With a vibration class of V2, it withstands motor conditions. Additionally, the device endures water without sealing. EMC performance is excellent even with the ECU shield case removed, as shielding is integrated into the PCB component. The assembly of the FOT and the IC in the PCB is simplified. Optics implement Tx and Rx lenses. The first prototypes are available.

Simple Implementation

As a plastic optical fiber with a large diameter, POF is more cost-effective to manufacture and install: installation is just easy plug and play; winding and clamping is similar to copper cables. Moreover, during the car assembly, the optical harness can be installed in the same process as the copper harness. POF has been present in vehicles for more than 10 years and is installed in millions of cars.

Demo: World’s First 50 Gb/s Automotive-grade Optical Network

KDPOF has successfully participated at the virtual ISCAS 2020 in October with several contributions: a presentation on multi-gigabit Ethernet for the automotive industry, an overview lecture on high-speed data communications over POF, and an important role in the final industry panel session. The IEEE International Symposium on Circuits and Systems (ISCAS) is the flagship conference of the IEEE Circuits and Systems (CAS) Society and the world’s premiere networking forum for researchers in the highly active fields of theory, design, and implementation of circuits and systems.

Towards the Multi-Gigabit Ethernet for the Automotive Industry

Session Chairmen Enrique Prefasi Sen, Analog and Mixed Signal Senior Designer of KDPOF, and Alberto Rodríguez-Pérez, Analog and Mixed Signal Manager of KDPOF, have presented the paper “Towards the Multi-Gigabit Ethernet for the Automotive Industry”. The paper, within the special session “Multi-gigabit Wireline & Optical Communication Circuits & Systems Session”, showed the status of Ethernet-based communication solutions, focused on optical links for the automotive industry. They displayed the implementation of a product compatible with the 1000BASE-RHC according to the IEEE Std 802.3bv, which is the first one able to transmit 1 Gbps over POF for automotive. In addition, the KDPOF experts described a new architecture to achieve up to 25 Gbps for automotive. The proposed multi-gigabit system leverages existing technologies such as VCSELs, multi-mode fibers, and photodiodes already developed for the data center industry.

High-Speed Data Communications over Fiber Optics

In his lecture, Alberto Rodríguez-Pérez gave an overview of the use of Plastic Optical Fiber as a medium for optical data communications and the techniques needed to get high speed data bitrates over POF. It is an interesting alternative optical communication channel to the Glass Optical Fibers (GOF) for applications that are not required to cover long distances, such as home or automotive networking. However, the reduced low bandwidth of the POF channel imposes big limitations in the maximum data bitrate that can be transmitted through this medium. Consequently, advanced data communication techniques such as channel equalization, data error correction, or data signal modulation need to be applied to achieve data bitrates above 1 Gbps.

Please see here for the video explaining the Multi-Gigabit demo.

Photonics Days Berlin Brandenburg: Optical Automotive Ethernet Presentation

KDPOF is delighted to present at the virtual Photonics Days Berlin Brandenburg 2020 from October 5 to 8, 2020. On Monday, October 5 at 10:40, César Esteban, Application and Support Manager of KDPOF, will give the presentation “Optical Automotive Ethernet” within the session “Innovative Optical Fibers”. Plastic optical fibers (POF) are the most reliable solution in vehicles since they can withstand harsh environments, vibrations, misalignments, dirtiness, humidity, wide temperature range, etc. Additionally, optical Ethernet generates very low noise and can operate in noisy environments, such as in RF electronic boards.

Full Standardization of Optical Gigabit

Recently, ISO (International Organization for Standardization) has added two new sections to the in-vehicle Ethernet series 21111. These newly approved parts are key components to assure reliable implementations of systems that realize in-vehicle Ethernet Optical 1 Gb/s as a physical layer. With the new ISO 21111 sections complementing the existing IEEE Std 802.3bvTM, optical Gigabit connectivity is now entirely standardized. Based on these standards, KDPOF’s optical technology allows a complete, compatible, and interoperating implementation for carmakers and Tier1s.

The KD1053 transceiver perfectly meets the requirements of carmakers by providing high connectivity with a flexible digital host interface, low latency, low jitter, and low linking time. The transceiver is optimized for low power and small footprint and transmits data at 1000/100 Mb/s on standard SI-POF, MC-POF, or PCS, according to 1000BASE-RH (IEEE 802.3bv).

Outlook on Optical Multi-Gigabit

With technological leaps such as electrical vehicles, automated driving, and V2X interconnection rushing through, automotive applications, utilization, and safety requirements are boosting the necessary network speed tremendously. Consequently, in-vehicle networks are on the brink of speeds from one to multiple gigabits per second. Optical Multi-Gigabit Ethernet in the car is on the verge of standardization and implementation. With the approval of the IEEE 802.3 working group, a team of individuals affiliated with more than 15 key carmakers and components suppliers, including KDPOF, has started the standardization of an IEEE 802.3 Automotive Optical Multi-Gigabit Standard with strong support from the industry. KDPOF has already displayed the world’s first demonstration of an automotive-grade optical transmission system with 50 gigabits per second single lane, leveraging datacom components.

Wire Harness Congress: EMC, Weight Reduction, and Multi-Gigabit Call for Optical Harness
YouTube

By loading the video, you agree to YouTube's privacy policy.
Learn more

Load video

At the virtual WEKA Bordnetz-Kongress 2020 (Wire Harness Congress) on September 22, 2020, KDPOF displayed insights and update on Optical Multi-Gigabit Connectivity. Juergen Schachtschneider, Automotive Manager Central Europe & Greater China, and César Esteban, Applications & Support Manager, presented how automotive networks profit from optical technology. Electric and autonomous driving architectures are substantially pushing the challenges for wiring systems. Issues include electromagnetic interference (EMI), electromagnetic susceptibility (EMS), and weight reduction. On top, automotive applications, utilization, and safety requirements are boosting the necessary network speed tremendously. The new 48-volt electrical architecture in cars additionally pushes the envelope in terms of cross-domain isolation requirements. Copper links for communication rates above 100 Mb/s need heavy and expensive solutions to comply with the stringent OEM’s EMC specs, resulting in high cost and very difficult engineering. Moreover, the weight of the ever-growing diameter of the required cables plays against the race for range increase of electrical powertrains.

Optical network technology overcomes these trends thanks to its inherent galvanic isolation, robustness, low cost, and low weight. Carmakers will benefit from optical links for communications between the 48-volt and the 12-volt domains. For weight, the optical network will save more than 30 percent of the equivalent copper-based harness weight. Optical Ethernet provides 100 Mb/s and 1 Gb/s network solutions today, and multi-gigabit Ethernet is the significant upcoming breakthrough for in-vehicle networks. The standardization effort for optical multi-gigabit is already in progress within the IEEE as an amendment to the Ethernet standard 802.3.

KDPOF is looking forward to participating in the upcoming virtual ISCAS 2020 from October 10 to 21 with several contributions: a presentation on multi-gigabit Ethernet for the automotive industry, an overview lecture on high-speed data communications over POF, and an important role in the final industry panel session. The IEEE International Symposium on Circuits and Systems (ISCAS) is the flagship conference of the IEEE Circuits and Systems (CAS) Society and the world’s premiere networking forum for researchers in the highly active fields of theory, design, and implementation of circuits and systems.

Presentation: Towards the Multi-Gigabit Ethernet for the Automotive Industry

On Tuesday, October 13, 2020, from 17:15 to 18:55, session Chairmen Enrique Prefasi Sen, Analog and Mixed Signal Senior Designer of KDPOF, and Alberto Rodríguez-Pérez, Analog and Mixed Signal Manager of KDPOF, will present the paper “Towards the Multi-Gigabit Ethernet for the Automotive Industry”. The paper, within the special session “Multi-gigabit Wireline & Optical Communication Circuits & Systems Session”, will show the status of Ethernet-based communication solutions, focused on optical links for the automotive industry. First, the presenters will display the implementation of a product compatible with the 1000BASE-RHC according to the IEEE Std 802.3bv, which is the first one able to transmit 1 Gbps over POF for automotive. Second, the KDPOF experts will describe a new architecture to achieve up to 25 Gbps for automotive. The proposed multi-gigabit system leverages existing technologies such as VCSELs, multi-mode fibers, and photodiodes already developed for the data center industry.

Lecture: High-Speed Data Communications over Plastic Optical Fibers

Alberto Rodríguez-Pérez will give an overview lecture on Saturday, October 17, 2020, from 16:00 to 16:45 in virtual room 2. In his lecture, Alberto will show an overview of the use of Plastic Optical Fiber as a medium for optical data communications and the techniques needed to get high speed data bitrates over POF. It is an interesting alternative optical communication channel to the Glass Optical Fibers (GOF) for applications that are not required to cover long distances, such as home or automotive networking. However, the reduced low bandwidth of the POF channel imposes big limitations in the maximum data bitrate that can be transmitted through this medium. Consequently, advanced data communication techniques such as channel equalization, data error correction, or data signal modulation need to be applied to achieve data bitrates above 1 Gbps.

Industry Panel

KDPOF is also substantially involved in the final Industrial Panel Discussion on Wednesday, October 21, 2020, from 16:45 to 17:45. Alberto Rodríguez-Pérez will chair the panel and Rubén Pérez de Aranda, CTO of KDPOF, will participate as panelist.

Aukua Systems Inc., provider of Ethernet test and monitoring solutions, and KDPOF are proud to announce the success of their technology partnership for ISO 21111 standardization. Recently, two additional sections, ISO 21111-3:2020 and ISO 21111-5:2020, of the international in-vehicle Ethernet ISO standard series 21111 have been published. “By providing their MGA2510 Ethernet Test and Monitoring Platform, Aukua Systems have supremely equipped the test setup for ISO certification,” stated Carlos Pardo, CEO and Co-founder of KDPOF.

Successful Technology Partnership Results in ISO Standard for Optical In-Vehicle Gigabit Connectivity

Suds Rajagopal is Co-Founder of Aukua Systems

Suds Rajagopal is Co-Founder of Aukua Systems

KDPOF supports the test ecosystem to make sure that ECUs including their technology will be tested by recognized test houses and based on the ISO standard. “We are delighted to support the overall standard for optical gigabit connectivity in vehicles with ISO 21111 complementing the existing IEEE Std 802.3bvTM,” added Suds Rajagopal, Co-Founder at Aukua Systems. “By leveraging Aukua’s test solutions, carmakers and Tier1s now have access to a complete, compatible, and interoperating implementation based on these standards.”

ISO 21111 Standardization

For reliable implementations of systems that implement in-vehicle Ethernet Optical 1 Gb/s as a physical layer, International Organization for Standardization (ISO) has added two new sections to the in-vehicle Ethernet series 21111: ISO 21111-3:2020 specifies additional features to IEEE 802.3bv, such as wake-up and synchronized link sleep algorithms. ISO 21111-5:2020 specifies requirements at the system level and a complete conformance and interoperability test plan for ECU providers that implement optical 1 Gb/s physical layer as specified in ISO 21111-3.

About Aukua Systems
Aukua Systems Inc. is a leading provider of Ethernet testing and visibility solutions. Whether developing, validating, deploying, supporting or managing applications or networks, their products help improve performance and make networks more secure. The Aukua product line includes packet capture tools, analyzers, traffic generators, and impairment emulators. Since 2015, equipment manufacturers, semiconductor companies, automotive OEMs and Tier1’s, large enterprises, service providers, and government agencies worldwide have depended on Aukua to build stronger networks.