Optical connections with POF are ideal for galvanic isolation in battery management systems

KDPOF proudly announces that the first application of a Battery Management System (BMS) based on optical connectivity will soon go into production. “We are delighted that by the end of 2019, the first carmaker will start assembly of a battery management system with POF connectivity,” stated Carlos Pardo, CEO and Co-founder of KDPOF. “Due to its inherent galvanic isolation, POF perfectly solves the electrical and interference challenges of new powertrain architectures for electric and autonomous driving.” In battery management systems, galvanic isolation is necessary between primary and secondary systems due to hazardous high voltages and noise isolation. Further applications that rely on the inherent Electromagnetic Compatibility (EMC) of POF are Integrated Smart Antenna (ISA) modules. For ISA, KDPOF and ALPS have developed a concept for an LTE-A telematics control module with POF links to the central communications hub in order to avoid interference with the smart antenna receivers. KDPOF’s GEPOF transceiver KD1053 provides high connectivity with a flexible digital host interface, low latency, low jitter, and low linking time.

KDPOF will present their optical Gigabit Ethernet Connectivity with high electromagnetic compatibility at IEEE-SA Ethernet & IP @ Automotive Technology Day on September 24-25, 2019 in Detroit, Michigan, USA, and ELIV (ELectronics In Vehicles) International VDI Congress on October 16-17, 2019 in Bonn, Germany.

As part of a team of automotive companies, Carlos Pardo, CEO and Co-founder of KDPOF – leading supplier for gigabit transceivers over POF (Plastic Optical Fiber) – is driving a new standard for multi-gigabit in automotive. It will enhance the existing 10GBASE-SR, which is the current standard by IEEE, to establish a communications channel in optical fiber at 10 Gb/s. “Infotainment, ADAS and growing levels of autonomy are the key trends for the exponential growth of data rates: 100 Mbps to 1 Gb/s, 2.5 Gb/s, 5 Gb/s and 10 Gb/s, with some OEMs even targeting 25 and 50 Gb/s for the upcoming years,” explained Carlos Pardo. “An existing standard such as 10GBASE-SR would ideally work for automotive applications. Unfortunately, it does not meet stringent automotive requirements.” 

Multi-Gigabit Communications Demand New Automotive Standard

The team of individuals affiliated with more than 15 key carmakers, such as PSA, Toyota, and Volvo; Tier1s; and components suppliers, including KDPOF, is specifying the needs and technologies to support a new multi-gigabit standard. The group led a Call for Interest (CFI) with the approval of the IEEE to start the standardization of an IEEE 802.3 Automotive Optical Multi-Gigabit Standard with strong support from the industry. The working group headed by Carlos Pardo (KDPOF) will kick off in the summer of 2019, with the first prototypes to be projected by the end of 2021. The study group will evaluate the creation of an IEEE Ethernet standard for the automotive industry, with speeds starting at 2.5 Gb/s and up to 50 Gb/s.

Targeting IEEE 802.3 Automotive Optical Multi-Gigabit Standard

The current IEEE standard 10GBASE-SR was originally created to meet the demands of data centers where temperature, operational life, price, reliability and mechanical robustness are very controlled and modest. With the harsh automotive environment, in addition to power consumption and especially cost being key in automotive applications, only a new communications scheme can provide enhanced robustness and adapt itself automatically to varying environmental conditions and manufacturing processes. Moreover, the technology should be scalable in order to enable even higher data rates such as 25, 50, and 100 Gbps in the future. By combining optimization in all areas of the new standard, the right balance of complexity and cost among all parts (CMOS IC, VCSEL, PD, ferrules, sleeves, cable, in-line connection technology, optics, and lenses, etc.) can be achieved in order to deliver the lowest cost, most reliable, and highly scalable solution to the automotive market.

Proof-of-Concept of an Automotive Optical Surround View System
YouTube

By loading the video, you agree to YouTube’s privacy policy.
Learn more

Load video

Proof-of-Concept of an Automotive Optical Surround View System

César Esteban, Application and Support Manager of KDPOF, is demonstrating a Proof-of-Concept of an automotive optical surround view system: the four cameras on top of a demo car are transmitting video data at 100 Megabits per second to their corresponding media converters. The media converters are converting from copper to optical: one, two, three, and four, one for each camera. The blinking green LED on the media converter indicates that the data traffic is running through. The orange LED shows that the optical link is at 100 Mbps. The traffic is sent to this optical GEPOF (Gigabit Ethernet Plastic Optical Fiber) switch, which has five ports. The four left ports are in orange because these are from the cameras with 100 Mbps each. The green LED on the right is the GEPOF link with 1 Gigabit per second. It is linked to this fifth media converter that is aggregating the traffic of the four cameras. The four video sequences are transmitted to a PC, which functions as display unit. The four streams are displayed simultaneously. The hosted hub consists of the GEPOF switch and five media converters.

In-vehicle optical multi-gigabit communications requires new automotive standard (Image: Fotolia/Chombosan)

Currently, the automotive industry is seeking technologies to enable 10 Gbps communications. This derives from the growing need of data interchange between sensors and electronic control units in the car. Infotainment, ADAS and growing levels of autonomy are the key trends that explain the exponential growth of data rates: 100 Mbps to 1 Gbps and to 10 Gbps. Some OEMs are even talking about 25 and 50 Gbps for the upcoming years.

Why 10GBASE-SR is not suitable for automotive

Ideally, an existing standard would work for automotive applications. 10GBASE-SR is the current standard by IEEE to establish a communications channel in optical fiber at 10 Gbps. It was originally created to meet the demands of data centers where temperature, operating life, price, reliability and mechanical robustness are very controlled and modest. Unfortunately, it does not meet the stringent automotive requirements. When automotive requirements are applied, the link budget offered by 10GBASE-SR is too low to be acceptable. Several suppliers of fiber optics components propose OEMs solutions like sleeves and ferrules, which are working concerning performance. But, what is the cost, what is the yield?

Why 10GBASE-SR is not suitable for automotive (Image: KDPOF)

New Automotive Standard Mandatory

Due to all these reasons, and with, power consumption and especially cost being key in automotive applications, only a new communications scheme is able to provide larger margins and to adapt itself automatically to varying environmental conditions and manufacturing process variations. Moreover, the new standard should be a scalable technology in order to enable even higher data rates such as 25, 50, and 100 Gbps in the future. By combining optimization in all areas of the new standard, the right balance in complexity and cost among all parts (CMOS IC, VCSEL, PD, ferrules, sleeves, cable, in-line connection technology, optics, and lenses, etc.) can be achieved in order to deliver the lowest cost, most reliable, and highly scalable solution to the automotive market. 

A team of individuals affiliated with more than 15 key carmakers, such as PSA, Toyota, and Volvo, Tier1s, and components suppliers, including KDPOF, is leading a Call for Interest (CFI). The team is specifying the needs and technologies to support the new standard for 10 Gbps in automotive that will complement the existing 10GBASE-SR. The working group is expected to kick off in the summer of 2019, with the first prototypes to be projected by the end of 2021. The objective of the CFI is to get approval by the IEEE to start the standardization of an IEEE 802.3 Automotive Optical Multi-Gigabit Standard. We warmly welcome you to join the CFI initiative!

KDPOF has signed value-added technology and distribution agreement for China (Image: gettyimage)
KDPOF has signed value-added technology and distribution agreement for China (Image: gettyimage)

KDPOF will partner with ZLGMCU, a leading microcontroller and embedded solutions provider in China, through a value-added technology and distribution agreement. The Chinese partner will provide market access in the Greater China region to KDPOF. This strategic agreement will open the huge electrified powertrain market in Greater China to the optical communications technology. Chinese OEMs and Tier1s are in need of a technology that is able to withstand the electrical noise generated in the electrical converters and motors.

Jürgen Schachtschneider focusses on Automotive Business Development for Central Europe and Greater China
Jürgen Schachtschneider focusses on Automotive Business Development for Central Europe and Greater China
Jürgen Schachtschneider focusses on Automotive Business Development for Central Europe and Greater China

In order to improve our services and provide a short line of communication in Central Europe, Jürgen Schachtschneider and Markus Dittmann have recently joined the KDPOF team. Jürgen Schachtschneider focusses on Automotive Business Development for Central Europe and Greater China. He is an expert in the automotive electronics industry who has held positions as Vice President of NXP and Nexperia.

Markus Dittmann supports KDPOF as Fiber Optics Connectivity R&D engineer. He has previously been R&D Product Development Engineer/Project Coordinator with TE Connectivity and Harman/Becker. As a technical project manager, he is responsible for effective cooperation with suppliers and partners in development projects in which connection solutions play an important role in the overall system. In addition to his responsibility for development activities with manufacturers of optical connectors for automotive Ethernet cable sets, Markus Dittmann is also involved in management, design, production testing and standardization activities.

Markus Dittmann supports KDPOF as Fiber Optics Connectivity R&D engineer (Image: Markus Dittmann)
Markus Dittmann supports KDPOF as Fiber Optics Connectivity R&D engineer (Image: Markus Dittmann)
Nikkei Automotive Ethernet Tech Days: Optical Link Concept for Telematics Control Module

KDPOF will present their optical link concept with Gigabit Ethernet over POF for telematics control modules at the Nikkei Automotive Ethernet Tech Days on June 5 and 6, 2019 at the Dojima River Forum in Osaka, Japan. KDPOF, in partnership with ALPS, has developed a concept for an LTE-A telematics control module that uses Gigabit Ethernet over POF to connect to the central communications hub such as a head unit. Since POF provides inherently high Electromagnetic Compatibility (EMC), the links do not interfere with the smart antenna receivers. With the necessary speed going beyond 100 Mbps, a 1 Gbps Ethernet link is required. Moreover, substituting the current RF link with an Ethernet data link will not only aggregate LTE-A packets but other sources such as digital radio as well. 

“Several OEMs choose the IEEE Std 802.3bv™ for Gigabit Ethernet over POF (GEPOF), which is the ideal solution to connect Smart Antenna to the central communications hub while avoiding electromagnetic interference (EMI),” explained Carlos Pardo, CEO and Co-founder of KDPOF. “The optical link enhances antenna performance, whereas in conventional systems, antenna reception sensitivity is reduced by the radiated emissions coming from the electrical communications links, such as UTP (Unshielded Twisted Pair) copper cables, coax, and the shielded alternatives.”

We look forward to meeting you in Japan. To set up a meeting, please contact Óscar Ciordia.

KDPOF presented guaranteed Wi-Fi Mesh up to 1 Gigabit/s with robust, low latency POF backbone at Broadband World Forum 2018

KDPOF will present their robust in-wall optical connectivity at stand 3 at Broadband Forum Asia on May 7-8, 2019 in Bangkok, Thailand. In his presentation “Bringing WiFi Performance to the Next Level” on 7 May at 12:20, Ramón Garcia, Business Development Manager with KDPOF, will explain options and good practices for how to transform access speeds into Wi-Fi speeds for a Gigabit experience. KDPOF boosts Wi-Fi performance to the next level for homes and small and home offices. “With our robust, low latency Plastic Optical Fiber, we provide the highest Wi-Fi mesh performance with a guaranteed 1 Gigabit per second to each access point,” stated Carlos Pardo, CEO and Co-Founder of KDPOF.

“Our field study with a tier one Service Provider proves that, in combination with Wi-Fi mesh nodes, the in-wall POF backbone raises performance throughout the house to over 350 percent in flats and up to 560 percent in multistory houses, compared with using a Wi-Fi backbone.” Plastic Optical Fiber is cost-efficient, low skill to install, and robust. POF can reuse any existing conduits in the home, making the cables invisible. It is much easier and quicker to install than Cat 6 cables. In addition to being used as a backbone for home networking, POF provides convenient Optical Network Termination (ONT) to GW link for a better placement of the Gateway (GW) within the home. By working with KDPOF, operators can satisfy their clients by providing very low latency, reduced jitter, fast download speeds, and reliable connectivity for video.

KDPOF presents an optical link concept with Gigabit Ethernet over POF for telematics control modules

KDPOF presents an optical link concept for telematics control modules. “Several OEMs choose the IEEE Std 802.3bv™ for Gigabit Ethernet over POF (GEPOF), which is the ideal solution to connect Smart Antenna to the central communications hub while avoiding electromagnetic interference (EMI),” explained Carlos Pardo, CEO and Co-founder of KDPOF. “The optical link enhances antenna performance, whereas in conventional systems, antenna reception sensitivity is reduced by the radiated emissions coming from the electrical communications links, such as UTP (Unshielded Twisted Pair) copper cables, coax, and the shielded alternatives.” KDPOF, in partnership with ALPS, has developed a concept for an LTE-A telematics control module that uses Gigabit Ethernet over POF to connect to the central communications hub such as a head unit.

Optical Gigabit Connectivity Secures High Electromagnetic Compatibility

Since POF provides inherently high Electromagnetic Compatibility (EMC), the links do not interfere with the smart antenna receivers. With the necessary speed going beyond 100 Mbps, a 1 Gbps Ethernet link is required. Moreover, substituting the current RF link with an Ethernet data link will not only aggregate LTE-A packets but other sources such as digital radio as well. 

Optical Link Concept for Smart Antenna

New plastic, composite and crystal roofs or roofs with openings do not shield the antenna from electromagnetic noise generated inside the car compartment. Instead, a significant amount of energy is radiated by the coaxial cable that is coupled back into the Integrated Smart Antenna (ISA) electronics, which severely degrades its performance. The natural EMC problem-free POF is ideally suited for an Ethernet connection, avoiding back-coupling conditions like the above mentioned one. In addition, the EMC problem-free link permits simple re-positioning of the antenna module among vehicle configurations. Another advantage is the simple integration with current ISA chipsets thanks to the Ethernet (SGMII/RGMII) host bus of the Gigabit POF transceiver. Furthermore, thanks to the Gigabit capacity of the Ethernet link over POF, the data link will aggregate various data streams such as LTE-A, Wi-Fi, V2x, RDS, DAB radio, etc.

KDPOF will present their optical link concept with Gigabit Ethernet over POF for telematics control modules at the Nikkei Automotive Ethernet Tech Days on June 5 and 6, 2019 in Osaka, Japan.

KDPOF robust, low latency POF backbone provides guaranteed Gigabit Wi-Fi mesh

KDPOF boosts Wi-Fi performance to the next level for homes and small and home offices. “With our robust, low latency Plastic Optical Fiber, we provide the highest Wi-Fi mesh performance with a guaranteed 1 Gigabit per second to each access point,” stated Carlos Pardo, CEO and Co-Founder of KDPOF. “Our field study with a tier one Service Provider proves that, in combination with Wi-Fi mesh nodes, the in-wall POF backbone raises performance throughout the house to over 350 percent in flats and up to 560 percent in multistory houses, compared with using a Wi-Fi backbone.” Plastic Optical Fiber is cost-efficient, low skill to install, and robust. POF can reuse any existing conduits in the home, making the cables invisible. It is much easier and quicker to install than Cat 6 cables. In addition to being used as a backbone for home networking, POF provides convenient Optical Network Termination (ONT) to GW link for a better placement of the Gateway (GW) within the home. By working with KDPOF, operators can satisfy their clients by providing very low latency, reduced jitter, fast download speeds, and reliable connectivity for video.

Field Study Confirms Superiority of Combined POF/Wi-Fi Backbone

KDPOF has conducted the field study to compare Wi-Fi performance using the same additional Wi-Fi Mesh nodes in three different types of homes: single-family houses, multistory houses, and flats. One study group used a POF backbone and the other used a Wi-Fi backbone. Transmission speed was measured in three selected rooms in each case. The results were explicit and significant: averaged out of the 20 family test houses, the POF backbone brought about an improvement of more than 400 percent, while a pure Wi-Fi backbone had a limited performance of up to 80 Mbps in 50 percent of the houses. In the multistory houses, the POF backbone’s performance enhancement reached over 560 percent, whereas Wi-Fi only had a reduced output of up to 62 Mbps. Despite the limited number of Wi-Fi end points used in the test, the numbers provided by the Wi-Fi backbone fall far short of the access speeds users have started to enjoy up to their homes. By using the same Wi-Fi Mesh nodes with a POF backbone, the end user experience achieves those numbers. End users experience what they pay for. 

Another important result was that with only one more access point with POF as the backbone, performance is significantly better sustained than with two additional access points with a Wi-Fi backbone. POF Backbone simplifies the Wi-Fi mesh architecture and reduces costs while improving overall performance substantially. 

KDPOF will present their robust in-wall optical connectivity at stand 3 at Broadband Forum Asia on May 7-8, 2019 in Bangkok, Thailand. In his presentation “Bringing WiFi Performance to the Next Level” on 7 May at 12:20, Ramón Garcia, Business Development Manager with KDPOF, will explain options and good practices for how to transform access speeds into Wi-Fi speeds for a Gigabit experience.